
ScriptGard: Automatic Context-Sensitive Sanitization
for Large-Scale Legacy Web Applications

Prateek Saxena
UC Berkeley
Berkeley, CA

prateeks@cs.berkeley.edu

David Molnar
Microsoft Research

Redmond, WA
dmolnar@microsoft.com

Benjamin Livshits
Microsoft Research

Redmond, WA
livshits@microsoft.com

ABSTRACT
We empirically analyzed sanitizer use in a shipping web ap-
plication with over 400,000 lines of code and over 23,244
methods, the largest empirical analysis of sanitizer use of
which we are aware. Our analysis reveals two novel classes
of errors: context-mismatched sanitization and inconsistent
multiple sanitization. Both of these arise not because san-
itizers are incorrectly implemented, but rather because they
are not placed in code correctly. Much of the work on cross-
site scripting detection to date has focused on finding miss-
ing sanitizers in programs of average size. In large legacy
applications, other sanitization issues leading to cross-site
scripting emerge.

To address these errors, we propose ScriptGard, a sys-
tem for ASP.NET applications which can detect and repair
the incorrect placement of sanitizers. ScriptGard serves
both as a testing aid to developers as well as a runtime mit-
igation technique. While mitigations for cross site scripting
attacks have seen intense prior research, we consider both
server and browser context, none of them achieve the same
degree of precision, and many other mitigation techniques
require major changes to server side code or to browsers.
Our approach, in contrast, can be incrementally retrofitted
to legacy systems with no changes to the source code and
no browser changes. With our optimizations, when used for
mitigation, ScriptGard incurs virtually no statistically sig-
nificant overhead.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—in-
vasive software;
D.1.2 [Programming Techniques]: Automatic Program-
ming—program transformation, program modification

General Terms
Security, Languages, Vulnerabilities
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1. INTRODUCTION
Web applications are explosively popular, but they suf-

fer from cross-site scripting (XSS) [4, 32] and cross-channel
scripting (XCS) [5]. At the core of these attacks is injection
of JavaScript code into a context not originally intended.
These attacks lead to stolen credentials and actions per-
formed on the user’s behalf by an adversary. Ideally, we
would create systems that resist attacks by construction.
Recent projects such as Blueprint have proposed primi-
tives to encode HTML output in a safe way [20]. Unfortu-
nately, these techniques are difficult to apply to legacy web
applications because they make fundamental changes to the
way an application creates HTML for consumption by the
web browser. Mitigations are needed for XSS attacks against
web applications that can be incrementally retrofitted to ex-
isting code.

Prior work: Much work in this space has focused on miss-
ing sanitizers and was performed on relatively small appli-
cations. The effort described in this paper goes well beyond
that, specifically focusing on applications approaching half a
million lines of code and above. We empirically analyze san-
itization in a widely used Web application with over 400,000
lines of code, the largest application analysis of which we are
aware. In this process, we discovered two novel classes of
errors: context-mismatched sanitization errors and inconsis-
tent multiple sanitization errors. These sanitization errors
arise from subtle nesting of HTML contexts and sharing
of dataflow paths in the application. Unlike previously re-
ported errors, mismatched sanitization is not due to faulty
or missing sanitizers; each individual sanitizer in our test ap-
plication is correct to the best of our knowledge. The new
categories of errors only became apparent because of the
scale and complexity of the applications we target, however,
we believe that they represent a new frontier of complexity,
shared by other applications of a similar scale.

As a point of comparison, it is instructive to con-
sider HTML templating systems such as Google GWT
or CTemplates, which employs Google AutoEscape’s auto-
sanitization to remove the need for manual sanitization [10].
Such systems are much easier to sanitize as compared to
large-scale legacy code that we focus on. For instance, de-
velopers are forced to separate untrusted variables from
HTML structure explicitly in templates, unlike in legacy
code. Their mechanisms does not need to handle the nesting
of HTML contexts and sharing of dataflow paths, because



they work with specific frameworks.

Consistent Sanitizer Placement: Context-mismatched
sanitization errors arise because developers accidentally mis-
match the choice of sanitizer with the web browser context,
the browser’s parsing state when processing the sanitized
data. This happens when the browser’s actual parsing state
or context is different from what the developer expects, al-
lowing unintended characters like single quotes in sanitized
data. Moreover, we discover inconsistent multiple sanitiza-
tion errors, in which the combination of sanitizers leads to
problems. For example, we find that two sanitizers in our
test application are not commutative: the order of applica-
tion matters, only one order is safe, yet both orders appear
in our empirical study.

We propose the problem of consistent sanitizer placement :
apply a sequence of sanitizers, chosen from a pre-specified
set, to an untrusted input such that it is safe for all the
possible browser contexts in which it is rendered. Sanitiza-
tion is also needed for cases where data must be encoded
to avoid causing functionality errors in a specific context,
such as encoding URLs in JavaScript. Prior work does not
model the notion of browser contexts precisely, rendering it
unable to detect these classes of errors. Depending on the
configuration/policy of the application and the authority of
the adversary who controls the sanitized data, these incon-
sistencies may or may not yield cross site scripting attacks,
but these remain errors in sanitization practice.

ScriptGard: We develop ScriptGard, a system for de-
tecting these sanitization errors, and repairing them by au-
tomatically choosing the appropriate sanitizer. Our sys-
tem requires no changes to web browsers or to server side
source code. Instead, we use binary rewriting of server code
to embed a browser model that determines the appropri-
ate browser parsing context when HTML is output by the
web application. In contrast, projects such as Blueprint
have proposed primitives to encode HTML output in a safe
way [20], but at the cost of requiring large scale server code
changes.

Unlike existing template-based HTML writing systems,
such as ASP.NET’s web and HTML controls, ScriptGard
performs context-sensitive sanitization. ScriptGard al-
lows developers to create custom nesting of HTML contexts,
which we show in Section 6 is common in our test appli-
cation, without sacrificing the consistency of the sanitiza-
tion process. During analysis, ScriptGard employs pos-
itive taint-tracking, which contrasts with traditional taint-
tracking because it is conservative (hence does not miss iden-
tifying sources of untrusted data) and can provide defense
against cross channel-scripting attacks [5, 13]. For example,
a recent vulnerability in Google Analytics was due to a non-
traditional source of untrusted input, namely event logs [30],
which our approach would detect.

We implement our analysis in ScriptGard, which uses
binary rewriting techniques to instrument applications run-
ning on the ASP.NET platform. We stress, however, that
the analyses we perform are general and could be ported to
other platforms with sufficient engineering work. Script-
Gard can be used either as a testing aid or as a runtime mit-
igation. As a testing aid, ScriptGard points out sanitizers
that are not correct for the runtime parsing context. Our dy-
namic technique ensures that these reports are for specific,
reproducible test cases that exhibit inconsistent sanitization.

As a runtime mitigation, we show how ScriptGard can

leverage a training phase where it runs with full instru-
mentation on a target application to learn correct sanitiz-
ers for different program paths. Then in deployment, only
a lighter path detection instrumentation is necessary. We
adapt techniques from preferential path profiling [7]; with
this optimization trick, ScriptGard incurs virtually no sta-
tistically significant overhead when auto-correcting inconsis-
tently sanitized paths we tested.

1.1 Contributions
This paper makes the following contributions.

Testing for sanitizer placement errors: In Section 2, we
identify two new classes of errors: context-mismatched san-
itization and inconsistent multiple sanitization. We imple-
ment a novel analysis that combines automatic server-side
instrumentation with a browser model to find inconsistent
sanitization. We further refine this analysis with positive
taint tracking to conservatively over-estimate potentially ad-
versarial inputs, which has been applied to SQL injection in
the past, but not to cross site scripting errors [13]. Because
we use both server and browser modeling, we find potential
sanitization flaws that would be missed with techniques that
focus exclusively on the server [2, 17, 21].

Runtime auto-sanitization: We show how our analysis
can determine the correct sanitization at runtime. While we
show the cost to run the full ScriptGard instrumentation is
a high multiple of the original run time, we propose a mech-
anism for using preferential path profiling techniques [7] to
shift most of this cost to a pre-deployment training phase.
With this optimization trick, deployed auto-correction in-
curs virtually negligible overhead. Our system changes only
the server side runtime, requiring no changes to server code
or to the browser.

Evaluation and empirical study: In Section 6 we eval-
uate both the testing approach as well as runtime auto-
sanitization on an application with over 400,000 lines of
code. We performed our security testing on a set of 53 large
web pages derived from 7 sub-applications built on top of our
test application. Each page contains 350–900 DOM nodes.
Out of 25, 209 total paths exercised, we found context-
mismatched sanitization on 1,207 paths ScriptGard an-
alyzed, 4.7% of the total paths analyzed. We also observed
an additional 285 instances of inconsistent multiple saniti-
zation errors. Our runtime mitigation technique safeguards
against these inconsistent uses of sanitizers by automatically
correcting them at runtime.

1.2 Paper Organization
The rest of this paper is organized as follows. Section 2

gives a description of the context-sensitive vulnerabilities
ScriptGard is designed to prevent. Section 3 provides an
overview of the ScriptGard architecture. Section 4 formal-
izes the vulnerabilities and provides a notion of correctness.
Section 5 provides specific details of ScriptGard imple-
mentation. Section 6 gives an experimental evaluation of
our techniques. Finally, Sections 7 and 8 describe related
work and conclude.

2. SANITIZER CONSISTENCY
In this section, we systematically explain the two new class

of sanitization errors we commonly observe in our empirical
analysis: context-mismatched sanitization and inconsistent



void AnchorLink.SetAttribRender (String userlink)
{ … 

if(…) { 

link.AttribMap[“href”] = “javascript: onNav(” + userlink + “);” 

} else 

{ 

link.AttribMap[“href”] = userlink; 

} … TagControl.RenderControl (writer, link); }

String DynamicLink.RenderControl()

void TagControl.RenderControl (HtmlTextWriter writer, Control tag)
{

AnchorLink stc;

if (dyn) {   stc = new DynamicLink();

stc.prefixHTML = “<script type=\”text/javascript\” >”;

stc.suffixHTML = “</script>”; 

stc.Content = tag.RenderControl(); 

} else {     stc = new AnchorLink(); 

stc.prefixHTML = stc.suffixHTML = “”;

stc.Content = tag.RenderControl(); 

} writer.Write(stc.ToHTML());  

String AnchorLink.RenderControl ()
{   

return “<a href=\“” + 

this.AttribMap[“href”]+ “\”></a>”; 

}

{

return “document.write(„<a href=\”” + 

this.AttribMap [“href”]

+ “\”></a> ‟); ” ; 

}

B1

B2

B3

B4

C1

C2 C3

Figure 1: Running example: C# code fragment illustrating the prob-
lem of automatic sanitizer placement. Underlined values are derived
from untrusted data and require sanitization; function calls are shown
with thick black arrows C1-C3 and basic blocks B1-B4 are shown in
gray circles.

multiple sanitization, both of which demonstrate that place-
ment of sanitizers in legacy code is a significant challenge
even if the sanitizers themselves are securely constructed.

It is well-known that script-injection attack vectors are
highly context-dependent — a string such as expression:

alert(a) is innocuous when placed inside a HTML tag con-
text, but can result in JavaScript execution when embedded
in a CSS attribute value context. In fact, the set of con-
texts in which untrusted data is commonly embedded by
today’s web applications is well-known. Sanitizers that se-
cure data against XSS in each of these contexts are publicly
available [10, 27]. We assume that contexts and their corre-
sponding functionally correct sanitizers, shown in Figure 7,
are standard and available.

2.1 Inconsistent Multiple Sanitization
Figure 1 shows a fragment of ASP.NET code written in

C# which illustrates the difficulty of sanitizer placement.
This running example is inspired by code from the large
code base we empirically analyzed. Consider the function
DynamicLink.RenderControl shown in the running example,
which places an untrusted string inside a double-quoted href

attribute which in turn is placed inside a JavaScript string.
This code fragment places the untrusted string into two
nested contexts — when the browser parses the untrusted
string, it will first parse it in the JavaScript string literal
and then subsequently parse it as a URI attribute.

In Figure 7 we show a sanitizer specification that maps
functions to contexts. In particular, two sanitizer functions,
EcmaScriptStringEncode and HtmlAttribEncode, are ap-
plied for the JavaScript string context and the HTML at-
tribute context, respectively. However, developers must un-
derstand this order of parsing in the browser to apply them
in the correct order. They must choose between the two
ways of composing the two sanitizers shown in Figure 2.

It turns out that the first sequence of sanitizer compo-
sition is inconsistent with the nested embedding contexts,
while the other order is safe or consistent. We observe that
the standard recommended implementation for these sani-

tizers [27], even in widely deployed public web frameworks
and libraries (Django, GWT, OWASP, .NET) do not com-
mute. For instance, EcmaScriptStringEncode simply trans-
forms all characters that can break out of JavaScript string
literals (like the " character) to Unicode encoding (\u0022
for "), and, HtmlAttribEncode HTML-entity encodes char-
acters (&quot; for "). This is the standard recommended
behavior these sanitizers [27] with respect to respective con-
texts they secure.

document.write(`<a href=" +
HtmlAttribEncode(EcmaScriptStringEncode(this.AttribMap["href"]))
+...

(a) Method 1

document.write(`<a href=" +
EcmaScriptStringEncode(HtmlAttribEncode(this.AttribMap["href"]))
+...

(b) Method 2

Figure 2: Different sanitization approaches.

Example 1. The attack on the wrong composi-
tion is very simple. The key observation is that apply-
ing EcmaScriptStringEncode first encodes the attacker-
supplied " character as a Unicode representation \u0022.
This Unicode representation is not subsequently trans-
formed by the second HtmlAttribEncode sanitization, be-
cause \u0022 is a completely innocous string in the URI
attribute value context.

However, when the web browser parses the transformed
string first (in the JavaScript string literal context), it per-
forms a Unicode decode of the dangerous character \u0022
back to ". When the browser subsequently interprets this
in the href URI attribute context the attacker’s dangerous
" prematurely closes the URI attribute value and can in-
ject JavaScript event handlers like onclick=... to execute
malicious code. This may also enable parameter pollution
attacks in URLs [1]. It is easy to confirm that the other
composition of correct sanitizers is definitely safe.

2.2 Context-Mismatched Sanitization
Even if sanitizers are designed to be commutative, devel-

opers may apply a sanitizer that does not match the context
altogether; we call such an error as a context-mismatched
sanitization inconsistency. Context-mismatched sanitization
is not uncommon in real applications. To intuitively un-
derstand why, consider the sanitization requirements of the
running example again.

Notice that the running example has 4 control-flow
paths corresponding to execution through the basic-blocks
(B1,B3), (B1,B4), (B2,B3) and (B2,B4) respectively. Each
execution path places the untrusted userlink input string in
4 different contexts (see Figure 3). Determining the browser
context is a path-sensitive property, and the developer may
have to inspect the global control/data flow to understand
in which contexts is a data variable used. This task can be
error-prone because the code logic for web output may be
spread across several classes, and the control-flow graph may
not be explicit (especially in languages with inheritance).
We show how two most prevalent sanitization strategies fail
to work on this example.

Failure of output sanitization: Consider the case in
which the application developer decides to delay all sani-
tization to the output sinks, i.e., to the writer.Write call in



HTML output Nesting of contexts

<script type="text/javascript"> JavaScript String Literal,
document.write(` Html URI Attribute,

<a href="javascript: onNav( JavaScript Number
TOENCODE )";></a>);
</script>

<a href="javascript: onNav( Html URI Attribute,
TOENCODE );"></a> JavaScript Number

<a href="TOENCODE"></a> Html URI Attribute

<script type="text/javascript"> JavaScript String Literal,
document.write(‘ <a href=" Html URI Attribute

TOENCODE"> </a>');
</script>

Figure 3: HTML outputs obtained by executing different paths in
the running example. TOENCODE denotes the untrusted string in the
output.

TagControl.RenderControl. There are two problems with
doing so, which the developer is burdened to identify man-
ually to get the sanitization right. First, the execution
paths through basic-block B3 embed the untrusted data
in a <SCRIPT> block context, where paths through basic-
block B4 place it in a HTML tag context. As a result, any
sanitizer picked cannot be consistent for both such paths.
Second, even if the first concern did not exist, sanitizing
the stc.Content variable at the output point is not correct.
The stc.Content is composed of trusted substrings as well
as untrusted data — if the entire string is sanitized, the san-
itizer could change programmer-supplied constant strings
in a way that breaks the intended structure of the output
HTML. For example, if the basic-block B1 executes, the un-
trusted data would be embedded in a JavaScript number
context( javascript: OnNav() explicitly by the program-
mer. If we applied HtmlAttribEncode to the stc.Content
the javascript: would be eliminated breaking the applica-
tion’s intended behavior.

Failure of input sanitization: Moving sanitization checks
to earlier points in the code, say at the input interfaces,
is not a panacea either. The readers can verify that
moving all sanitization to a code locations earlier in the
dataflow graph continues to suffer from path-sensitivity is-
sues. Sanitizing in basic-blocks B1 and B2 is not suf-
ficient, because additional contexts are introduced when
blocks B3 and B4 are executed. Sanitization locations mid-
way in the dataflow chain, such the concatenation in func-
tion AnchorLink.SetAttribRender, are also problematic be-
cause depending on whether basic-block B1 executes or B2
executes, the this.AttribMap["href"] variable may have
trusted content or not.

2.3 Why is Consistency Hard?
Expressive languages, such as those of the .NET platform,

permit the use of string operations to construct HTML out-
put as strings with trusted code intermixed with untrusted
data. Plus, these rich programming languages allow de-
velopers to write complex dataflow and control flow logic.
We summarize the following observations that exist in large
legacy applications authored on such rich programming en-
vironments:

• String outputs: String outputs contain trusted con-
stant code fragments mixed with untrusted data.

• Nested contexts: Untrusted data is often embedded
in nested contexts.

• Intersecting data-flow paths: Data variables are
used in conflicting or mismatched contexts along two
or more intersecting data-flow paths.

• Custom Output Controls: Frameworks such as
.NET encourage reusing output rendering code by pro-
viding built-in“controls”, which are classes that render
untrusted inputs in HTML codes. Large applications
extensively define custom controls, perhaps because
they find the built-in controls insufficient. The running
example is typical of such real-world applications — it
defines its own custom controls, DynamicLink, to ren-
der user-specified links via JavaScript.

In this paper, we empirically analyze the extent to which
these inconsistency errors arise in practical real-world code.
In security-conscious applications, such as the ones we study,
security audits are routine and use of lint tools can enforce
simple discipline. In particular, notice that running exam-
ple code is careful to restrict the browser context in which
data is allowed to be embedded. For instance, it rigorously
appends quotes to each attribute value, as recommended by
security guidelines [27].

We point out that state-of-the-art static analysis
tools which scale to hundred-thousand LOC applications,
presently are fairly limited. Most existing tools detect data-
flow paths with sanitizers missing altogether. This class of
errors is detected by several static or dynamic analysis tools
(such as CAT.NET [22] or Fortify [9]). In this paper, we
focus instead on the errors where sanitization is present but
is inconsistent.

3. SCRIPTGARD APPROACH
ScriptGard employs a dynamic analysis approach to de-

tecting and auto-correcting context-inconsistency errors in
sanitization. At a high-level, the overall architecture for
ScriptGard is shown in Figure 4. ScriptGard has two
main components: (a) a training or analysis phase, and (b)
a runtime auto-correction component. In the analysis step,
ScriptGard traces the dynamic execution of the applica-
tion on test inputs. By tracking the flow of trusted values,
ScriptGard can identify all untrusted data embedded in
the application’s output. Given a trace of an application’s
execution, ScriptGard is capable of mapping the trace to
a static program path. ScriptGard is able to determine
the correct sequence of sanitizers that should be applied on
this program path, by parsing the application’s output.

The results of our analysis phase are cached in a saniti-
zation cache, which records all execution paths that were
seen to have context-inconsistency sanitization errors. This
cache serves as a basis for runtime auto-correction of the
application during deployed operation. Our intuition is that
context-inconsistency arises in a relatively small fraction of
the application’s code paths. ScriptGard’s architecture
repairs the placement of sanitizers only on these execution
paths by using a light-weight instrumentation. The auto-
correction component deploys a low-overhead path-detection
technique that detects when these problematic paths are ex-
ecuted at runtime and applies the correct sanitization to
untrusted values. The primary motivation for this archi-
tecture is to enable separation of expensive analysis to be
performed prior to deployment, leaving only low-overhead
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Figure 4: ScriptGard architecture.

components enabled at runtime. Another key feature of our
auto-correction component is that it requires no updates or
changes to the application code, thereby avoiding a long
develop-review-patch development cycle.

Requirements: ScriptGard requires a map between
browser contexts and sanitizer functions appropriate for
those contexts. In practice this correspondence is specified
by security architects or other experts and can be done once
and for all.

Figure 7 shows the example sanitization specification
for the running example as well as the applications we
study. The sanitizer SimpleHTMLFormatting transforms
the input such that its output can only contain certain
permitted HTML tags such as <b>, <a> and so on, with
the goal of preventing a browser from executing any Java-
Script from the resulting string. In contrast, the sanitizer
EcmaScriptStringEncode takes JavaScript literals and con-
verts them to Unicode. Such conversion is necessary because
the JavaScript parser converts Unicode to some other repre-
sentation for string data. A similar function UrlPathEncode

performs percent-encoding. This percent encoding is re-
quired because the URL parser will decode URLs on entry
to the parser.

Reasoning about the localized correctness and complete-
ness properties of the context-sanitizer mapping is an inde-
pendent problem of interest; techniques for such correctness
checking are an area of active research [2, 15, 17]. In this
work, we assume the functional completeness and correct-
ness for the specifications.

3.1 Training Phase
ScriptGard employs a dynamic analysis which treats

each executed path as a sequence of traces. Each trace is
conceptually a sequence of dataflow computation operations
that end in a write to the HTTP stream or an output sink.
As we highlighted in Section 2, we must consider traces be-
cause sanitizer placement is path-sensitive. ScriptGard’s
dynamic analysis checks if the sanitization applied on any
untrusted trace is correct. For each untrusted trace observed
during program execution, ScriptGard first determines a
mapping for each program trace ~t to a sequence of sanitizer
functions, f1, f2, . . . , fk, to apply, and second the portion of
the output string that should be sanitized.

We call the first step context inference. The second step is
achieved by a technique called positive taint-tracking. If the
sequence of sanitizers applied on a trace does not match the
inferred sequence, ScriptGard discovers a violating path
and it adds the corrected sanitizer sequence for this path to
the sanitization cache.

Positive Tainting: We have discussed untrusted execution
traces in the abstract, but we have not talked about how
ScriptGard determines which traces are untrusted and,
therefore, need to be sanitized. Exhaustively identifying all
the sources of untrusted data can be challenging [19]. Re-
cent work has shown that failure to identify non-web related
channels, such as data read from the file system, results in
cross-channel scripting attacks [5].

Instead of risking an incomplete specification, which
would miss potential vulnerabilities, ScriptGard takes a
conservative approach to identifying untrusted data: it em-
ploys positive tainting, which is a modification of traditional
(or negative tainting) used in several previous systems [12,
18, 26, 31, 35, 36]. Instead of tracking untrusted (negative)
data as it propagates in the program, we track all safe data.
Positive tainting is conservative because if input specifica-
tions are incomplete, unknown sources of data are treated
as unsafe by default. We describe details of these two steps
in Section 5.

3.2 Runtime Auto-Correction
From the training phase, ScriptGard builds a sanitiza-

tion cache, which is a map between code paths and the cor-
rect sequence of sanitizers to apply for the browser context
reached by that code path. Then at runtime, ScriptGard
detects which path is actually executed by the program. If
the path has been seen in the training phase, then Script-
Gard can look up and apply the correct sanitizer sequence
from the cache, obviating the need for the full taint flow
instrumentation.

If the path has not been seen in the training phase, then
the owner of the web site has a policy choice. One choice is
to drop the request, then immediately re-execute the appli-
cation with all ScriptGard checks enabled. This is secure
but adds signficant user latency. The other choice is to al-
low the request to complete, but then log the path taken
for later analysis. This is not secure but preserves the per-
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Figure 5: An abstract model of an HTML 5-compliant Web browser.
Gray boxes represent various parsers for the browser sub-grammars.
Black boxes are the major browser execution components.

formance of the application. We leave this choice up to the
application administrator.

The common overhead for runtime in both policy choices
comes from the cost to detect the path executed by the ap-
plication. We leverage a technique called preferential path
profiling, as first used in the Holmes statistical debugging
project [7]. Preferential path profiling is a technique for
adding lightweight instrumentation to a program to detect
if the program executes one of a set of “preferred” paths
known in advance of deployment. The technique uses an
optimized way of labeling code blocks and updating state
during execution to reduce overhead. We report overhead
on our application in Section 5.

4. FORMALIZATION
In this section, we formalize our approach and the secu-

rity properties we aim to achieve. We start with an abstract
model of the browser. This allows us to define precisely what
we mean by a browser parsing context. The notion of a con-
text is closely tied to sanitizers that are used, as discussed
previously in Section 2. For example, HtmlAttributeEncode
will properly escape strings in the HTML attribute con-
text, but it is inconsistent to use in other contexts. That
in turn allows us to precisely characterize context-sanitizer
mismatches. We then define what it means for a server-side
program to prevent all such context-sanitizer mismatches.
Finally, we show that our strategy in ScriptGard in fact
transforms programs into ones that ensure dynamically that
no context-sanitizer mismatches are possible.

4.1 Browser Model: Definitions
We begin with a browser model as illustrated in Figure 5.

For our purposes, we model a web browser as a parser con-
sisting of sub-parsers for several languages. Of course, a
real browser has a great deal of implementation issues and
side effects to grapple with, but these are out scope of the
problems we consider here.

More precisely, we treat the browser as a collection of
parsers for different HTML standard-supported languages.

Figure 5 shows the sub-grammars corresponding to the
HTML language, JavaScript language, and the languages
for web addresses and inline style attributes.

Because inconsistent application behavior may depend on
context that are more fine-grained that regular HTML or
JavaScript parsing, we can further divide each sub-grammar
into partitions. For instance, the figure shows the Java-
Script grammar further subdivided into the string literal
sub-grammar, JSON sub-grammar, statement sub-grammar
and the number sub-grammar. Formally, we model the
browser as a composition of multiple sub-grammars.

Definition 1. Let G1, G2, ...Gn be n sub-grammars, where
each context-free grammar Gi = (Vi,Σi, Si, Pi) is a quadru-
ple consisting of a set of non-terminals Vi, terminals Σi ,
start symbol Si and productions Pi.

Let T be a set of grammar cross-grammar transition sym-
bols and the grammar transition productions PT , be a set
of productions of the form A → Ti or Ti → B, such that
A ∈ Vi, B ∈ Vj (i 6= j) and Ti ∈ T .

We define a web browser as a grammar G = {V,Σ,S, P},
with non-terminals V = V1 ∪ V2...∪ Vn, terminals Σ = ∪Σi,
start symbol S and a set of productions P = PT ∪ P1 ∪
P2...Pn.

Conceptually, parsers for various languages are invoked in
stages. After each sub-parser invocation, if a portion of the
input HTML document is recognized to belong to another
sub-language, that portion of the input is sent to the appro-
priate sub-language parser in the next stage. As a result, any
portion of the input HTML document may be recognized
by one or more sub-grammars. Transitions from one sub-
grammar to another are restricted through productions in-
volving special transition symbols defined above as T , which
is key for our formalization of context. In a real web browser,
each transition from one sub-grammar to another may be
accompanied by a one or more transduction steps of the
recognized input.

Example 2. For instance, data recognized as a JavaScript
string is subject to Unicode decoding before being passed
to the AST. In addition, HTML 5-compliant browsers sub-
ject data recognized as a URI to percent-encoding of certain
characters before it is sent to the URI parser [8].

This form of encoding can be modeled using additional
rules in either of the sub-grammars. While restricting the
browser formalism to a context-free grammar might elide
some of the real-world complexities, we find this to be a
convenient way for defining the notion of context, which
appears to match the reality quite well.

Browser Parsing Contexts: We formally define the no-
tion of a browser parsing context here, with reference to the
grammar G. Intuitively, a context reflects the state of the
browser at a given point reading a particular piece of input
HTML. Each step in the derivation, denoted by ⇒ applies
a production rule and yields a “sentential form”, i.e., a se-
quence consisting of non-terminals and terminals. We model
the parsing context as a sequence of transitions made by the
parser between the sub-grammars in G, only allowing the
derivations that denote transition from one sub-grammar to
another.

Definition 2. Let derivation D : S ⇒∗ γ correspond to
the sequence (P1, P2, ...Pk) of production rule applications
to derive a sentential form γ from the start symbol S.



A browser context CD induced by a derivation D is de-
fined as a projection (P1, P2, . . . Pk) →↓ (P ′1, P

′
2 . . . P

′
l ), that

preserves only the productions P ′i in the set of grammar tran-
sitions PT .

Our grammars are deterministic, so the notion of induc-
ing a parsing context is well-defined. The browser enters a
particular context as a result of processing a portion of the
input.

Definition 3. We say that an input I induces browser con-
text C, if

• D : S(I) ⇒∗ γ (on input I, S reduces to γ following
derivation D), and

• D induces context C.

Sanitizers: A complex modern web application typically
has a variety of both server- and client-side sanitizers. We
make the simplifying assumption that sanitizers are pure,
i.e. lacking side-effects. Our review of dozens of real-life
sanitizers confirms this assumption. We model sanitizers as
abstract functions on strings. Formally,

Definition 4. A sanitizer is a function f : string 7→ string.

Definition 5. A context-sanitizer map is

ψ(C) = ~f

where C is a context and ~f is a sequence of sanitizers.

The goal of sanitization is typically to remove special char-
acters that would lead to a sub-grammar transition. For ex-
ample, we often do not want a transition from the HTML
parsing context to the JavaScript parsing context, which
would be enabled by inserting a <SCRIPT> block in the mid-
dle of otherwise non-offending HTML. Of course, this is but
one of many ways that the parser can transition to a differ-
ent context. Next, we define the correctness of a sequence
of sanitizers. The intuition is that is after sanitization, the
state of parsing is confined to a single context.

Definition 6. Let input I consist of the parsed and non-
parsed portion: I = [IP ◦INP ]. Let input IP induce browser

context C such that ψ(C) = ~f . Then we say that the

context-sanitizer map is correct if when ~f(INP ) is reduced,
the grammar never leaves context C.

In other words, applying the correct sequence of sanitiz-
ers “locks” a string in the current context. In particular, a
string locked in the HTML context cannot cause the browser
to transition to the JavaScript context, leading to a code in-
jection.

4.2 Server-side Program: Definitions
So far, our discussion has focused on parsing HTML

strings within the browser regardless of their source. Our
goal is to produce HTML on the server that will always
have consistent sanitization. Server-side programs take
both untrusted and trusted inputs. Untrusted inputs are
the well-known sources of injection possibilities such as
HTML form fields, HTML headers, query strings, cook-
ies, etc. Trusted inputs are often read from configuration
files, trusted databases, etc. Note that the notion of what
is trusted and what is not is often not clear-cut. Section 3.1

describes how ScriptGard addresses this problem. Next,
we define what it means for a program to properly sanitize
its inputs.

Definition 7. A server-side program P : I → O defines
a relation from untrusted user inputs I to output string
O. The program interprocedural data flow graph is a graph
〈N , E〉 with designated sets of nodes

〈Src,Snk ,San〉 ⊆ 〈N ×N ×N〉

where Src are the sources that introduce an untrusted in-
puts in P, Snk are the sinks that write strings to the output
HTTP stream, and San are the sanitizers used by the pro-
gram.

Without loss of generality, we assume that sink nodes ei-
ther write untrusted strings to the output stream or trusted
strings, but never strings containing both. Sink opera-
tions with mixed content can be translated to an equiv-
alent dataflow graph with only exclusively trusted or un-
trusted sink nodes using sink node splitting: the output
of a mixed string Snk(q1 + q2 + · · · + r1 + . . . qn) can
be split into a sequence of exclusive sink writes Snk(q1),
Snk(q2) . . . , Snk(r), . . . , Snk(qn).

Definition 8. An untrusted execution trace t of program
P is a sequence of executed nodes

~t = n1, . . . , nk ∈ N

such that n1 ∈ Src, nk ∈ Snk.

Definition 9. Let t be an untrusted execution trace ~t =
n1 . . . nk and let ~f = f1, . . . , fm be a sequence of sanitizers
such that f1, . . . , fm is a subsequence of n2, . . . , nk−1.

For all inputs I, let O be the total output string just before
the execution of the sink node in ~t. We say that trace ~t is

properly sanitized if O induces context C and ψ(C) = ~f .

In other words, for all possible trace executions, we require
that the proper set of sanitizers be applied on trace for the
expected parsing context. Note that trusted traces are al-
lowed to change the browser context. A common example
of that is

output.WriteLine("<SCRIPT>");
output.WriteLine("alert('hi');");
output.WriteLine("</SCRIPT>");

where each string is a sink and the first and third lines cor-
respond to browser state transitions.

Theorem 1. If untrusted trace ~t is properly sanitized, as-
sume the browser has read string O which induces context C.
Then reading the rest of the string output produced by ~t can-
not induce any contexts C′ 6= C.

Proof: Let input I = [IP ◦ INP ]. By Definition 9, for all

input-output pairs IP → O, ~t contains sanitizers ~f correct
for any context C inducible by O. By Definition 6, we know

that applying ~f to the remainder of the input INP cannot
leave context C.

For reasons of correctness, we wish to ensure that all un-
trusted execution traces are properly sanitized.

Definition 10. A server-side program P is properly sani-
tized if for every untrusted execution trace ~t of P, ~t is prop-
erly sanitized.



As an obvious corollary, if the program is properly san-
itized, then no untrusted input to the server program can
force the browser to change its context.

5. IMPLEMENTATION DETAILS
We now describe our implementation in more detail, with

reference to the ASP.NET framework. This section first
describes positive taint tracking implemented in Script-
Gard in Section 5.1, and then context inference and auto-
correcting runtime sanitization in Sections 5.2 and 5.3.

5.1 Positive Taint Tracking
We describe our full implementation for positive taint

tracking for strings in the .NET platform. The .NET run-
time supports two kinds of string objects: mutable and
immutable objects. Immutable objects, instances of the
System.String class, are called so because their value cannot
be modified once it has been created [23]. Methods that ap-
pear to modify a String actually return a new String con-
taining the modification. The .NET language also defines
mutable strings with its System.Text.StringBuilder class,
which allows in-place modification of string values; but all
access to the characters in its value are mediated through
methods of this class [24]. In essence, all strings in .NET
are objects, whose values are accessed through public meth-
ods of the class — the language does support a primitive
string type but the compiler converts string type to the
String object and uses class methods whenever the value of
a primitive string type is manipulated.

Using the encapsulation features offered by the language,
we have implemented the taint status for each string object
rather than keeping a bit for each character. The taint sta-
tus of each string object maintains metadata that identifies
if the string is untrusted and if so, the portion of the string
that is untrusted. Our implementation maintains a weak
hash table for each object, which keys on weak references to
objects, so that our instrumentation does not interfere with
the garbage collection of the original application objects and
scales in size. Entries to freed objects are therefore automat-
ically dropped. Taint propagation, capturing direct data de-
pendencies between string objects, is implemented by using
wrapper functions for all operations in string classes. Each
wrapper function updates the taint status of string objects
at runtime.

We use CCI Metadata [34], a robust static .NET binary
rewriting infrastructure to instrument each call to the string
object constructors with taint propagation methods. The
.NET language is a stack-based language and CCI Meta-
data provides the ability to interpose on any code block and
statically rewrite it. Using this basic facility, we have imple-
mented a library that allows caller instrumentation of spec-
ified functions, which allows redirection of original method
calls to static wrapper methods of a user-defined class. Redi-
rection of virtual function calls is handled the same way as
static calls with the exception that the wrapper function ac-
cepts the instance object (sometimes referred to as the this

parameter) is received as the first argument to the wrapper
function.

Soundness Considerations: We explain how our positive
taint implementation is sound, i.e., does not miss identifying
untrusted data, with exception identified in point 5 below.
We show that this exception are rare in our test program.

1. The language encapsulation features provide the guar-
antee that all access to the string values are only per-
mitted through the invocation of methods defined in
the string classes.

2. All constant strings belong to the immutable string
primitive type. Any modification to the primitive
value by the program is compiled to a conversion to an
object of the string class, which invokes the string class
constructors. Thus, we can safely track all sources of
taint by instrumenting these constructors.

3. The string classes System.String and
System.Text.StringBuilder are both sealed classes;
that is, they cannot be inherited by other classes.
This eliminates the possibility that objects that we do
not track could invoke methods on the string classes.

4. Conversion between the two string classes is possible.
This involves the call to the Object.ToString generic
method. Statically, we instrument all these calls, and
use .NET’s built-in reflection at runtime to identify if
the dynamic instance of the object being converted to
a string and perform the taint metadata update.

5. String class constructors which convert values from
non-string types are treated as safe (or positively
tainted) by default. This is because we do not cur-
rently track taint status for these types. In principle,
this is a source of potential unsoundness in our imple-
mentation. For example, the following code will lead
our tracking to treat untrusted data as trusted:

String untrusted = Request.RawUrl;
var x = untrusted.ToCharArray();
....
String outputstr = new String(x);
httpw.Write(outputstr);

Fortunately, these constructors are rare in practice.
Figure 11(a) shows the distribution of functions in-
strumented by ScriptGard. The key finding is that
potentially unsound constructions occur only in 42 out
of 23,244 functions instrumented for our application.
Our implementation ignores this source of false neg-
atives presently; we can imagine verifying that these
do not interfere with our needs using additional static
analysis or implement more elaborate taint-tracking in
the future.

Output: The result of ScriptGard’s analysis is three
pieces of information. First, ScriptGard marks the por-
tion of the server’s output which is not positively tainted.
The untrusted texts are delimited using special markers con-
sisting of characters that are outside the alphabet used by
the application legitimately. Second, for each string writ-
ten to the HTTP output stream, it records the sequence
of propagators (such as string concatenation, format-string
based substitution) applied on the output text fragment.
In essence, this allows ScriptGard to (a) separate strings
that are used for constructing HTML output templates from
other strings, and, (b) identify the propagator that places
the untrusted data into an output template. Third, it
records a path string identifying the control flow path lead-
ing to each HTML output sink operation.

In addition to the above information, ScriptGard gath-
ers the sequence of sanitizers applied to a given untrusted



data. To do this, each sanitizer is instrumented similarly
to surround the input data with additional special markup
identifying that sanitizer’s application to the input data.
The knowledge of the untrusted data along with the nest-
ing of sanitizers is thus encoded in the HTML output of the
server. This output is then subject to the context inference
step, which is described next.

5.2 Context Inference
For a given analyzed path the server outputs a HTML re-

sponse encoding the information identifying sub-strings that
are untrusted, as well as, the sequence of sanitizers applied.
ScriptGard employs a web browser to determine the con-
texts in which untrusted data is placed, in order to check
if the sanitization sequence is consistent with the required
sequence.

In our implementation, we use an HTML 5 compliant
parser used in the C3 browser, that has been developed from
scratch using code contracts to be as close to the current
specification as possible. It has a fast JavaScript engine as
well. The parser takes an HTML page as input. In the page,
untrusted data is identified by special markup. The special
markup is introduced at the server’s output by our positive
taint-tracking.

We augment the HTML parser to track the sequence of
browser contexts in which data marked as untrusted ap-
pears. In our implementation for HTML, we treat each con-
text to be (a) the state of the lexer (as defined in the HTML
5 draft specification), (b) the stack of open elements (as de-
fined in the HTML 5 draft specification), and (c) specific
information about the local state of the parse tree (such as
the name of current tag or attribute being processed).

We apply techniques similar to string accenting for track-
ing untrusted data in other contexts [6]; DOM nodes that
correspond to untrusted data are also marked. Similar con-
text tracking is applied for the JavaScript parser. For the
policy of our applications and the policies identified in pre-
vious work [20], we have found this level of tracking to be
adequate.

Using context information, ScriptGard decides the cor-
rect sequence of sanitizers to apply for a given untrusted ex-
ecution trace. To determine the correct sanitizer sequence,
ScriptGard applies for each context in the trace, in the
nesting order, the appropriate sanitizer from the input san-
itization specification. The inferred chain of sanitizers is
guaranteed to be correct for the trace, eliminating multi-
ple sanitization errors that could have resulted from manual
placement.

5.3 Runtime Sanitization Auto-Correction
During analysis or training, for each untrusted trace writ-

ing to sink operation S, ScriptGard records the static pro-
gram path by profiling. It also record the first propagator P
in the dataflow computation, typically a string concatena-
tion or format-string based string substitution, that places
the untrusted data inside the trusted output string emit-
ted at S. ScriptGard instruments the deployed applica-
tion with a low-overhead runtime path detector. During
deployed operation, If the currently executing path is is in
the sanitization cache, ScriptGard sanitizes the untrusted
substring(s) in the output string using the following tech-
nique.

Rewriting untrusted output: ScriptGard maintains a
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Figure 6: Distribution of DOM sizes, in nodes, across our training
HTML pages.

HTML Sink Context Correct sanitizer that suffices

HTML Tag Context HTMLEncode, SimpleTextFormatting

Double Quoted Attribute HTMLAttribEncode

Single Quoted Attribute HTMLAttribEncode

URL Path attribute URLPathEncode

URL Key-Value Pair URLKeyValueEncode

In Script String EcmaScriptStringEncode

CDATA HTMLEncode

Style Alpha− numerics

Figure 7: Sanitizer-to-context mapping for our test application.

shadow copy of the untrusted data. If the path is not in the
sanitization cache, the actual value of the untrusted data is
used at output sink. If the path is in the sanitization cache,
the shadow copy is sanitized, then the results are output.

To do this, ScriptGard instrumentation-based program
transformation for maintaining shadow copies for each un-
trusted trace computation. Each untrusted trace computa-
tion is essentially a sequence of string propagator operations
like string concatenation and format-string based substitu-
tion writing at a sink S. At string propagators using un-
trusted inputs, the added instrumentation creates a shadow
copy of the untrusted data, and delimits it with special
markup. At S, if the path executed is in the sanitization
cache, the added instrumentation strips the actual value and
markup out, applies the sanitization on the shadow copy,
and writes it to the output stream. Finally, at S, if the path
is not in the sanitization cache, the instrumentation strips
the shadow value out and writes the actual value to the out-
put stream leaving the application behavior unchanged for
such paths.

6. EVALUATION
Our evaluation focuses on a large legacy application of

over 400,000 lines of server-side C# code. We accessed 53
distinct web pages, which we subjected to ScriptGard
analysis. Figure 6 shows the size of the various web pages
in terms of the number of DOM nodes they generate from
their initial HTML output (ignoring dynamic updates to
the DOM via JavaScript, etc.). Page sizes range from 350
to 900 nodes. Our analysis statically instrumented 23,244
functions.
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Figure 8: Histogram of sanitizer sequences consisting
of 2 or more sanitizers empirically observed in analysis,
characterizing sanitization practices resulting from man-
ual sanitizer placement. E,H,U, K,P,S denote sanitizers
EcmaScriptStringLiteralEncode, HtmlEncode, HtmlAttribEncode,
UrlKeyValueEncode, UrlPathEncode,SimpleHtmlEncode respectively.

Our application uses custom objects that handle their own
rendering. Figure 6 shows a majority of the DOM nodes in
the applications’ outputs are derived from custom objects.
The language-based solution of ScriptGard, as opposed to
.NET runtime library-specific solution, allows it to directly
analyze these custom objects.

Figure 7 shows the mapping between contexts and saniti-
zation functions for our application; which is a strict subset
of mapping in previous work [20]. In particular, it permits
only quoted attributes which have well-defined rules for san-
itization [27]. Furthermore, it always sets the page encoding
to UTF-8, eliminating the possibility of character-set encod-
ing attacks [14]. We arrived at the result in Figure 7 after
several interactions with the application’s security engineers.

6.1 Analysis Results
Context-mismatched sanitization: Figure 9 shows that
ScriptGard exercised 25,209 paths on which sanitization
was applied. Of these, 1,558 paths (or 6.1%) were improp-
erly sanitized. Of these improperly sanitized paths, 1,207
( 4.7% of the total analyzed paths) contained data that
could not be proven safe by our positive taint tracking infras-
tructure, so therefore are candidates for runtime automatic
choice of sanitization. The remaining 1.4% of paths were

sanitizing trusted strings improperly; ScriptGard does not
consider these to be safe, therefore they do not need runtime
correction.

Inconsistently sanitized

Web Sanitized

Page Paths Total Highlight

Home 396 14 9

A1 P1 565 28 22
A1 P2 336 16 11
A1 P3 992 26 21
A1 P4 297 44 35
A1 P5 482 22 17
A1 P6 436 23 18
A1 P7 403 19 13
A1 P8 255 22 18
A1 P9 214 16 12
A1 P10 1,623 18 14

A2 P1 315 16 12
A2 P2 736 53 47
A2 P3 261 21 16
A2 P4 197 16 12
A2 P5 182 22 18
A2 P6 237 22 18
A2 P7 632 20 16
A2 P8 450 23 19
A2 P9 802 26 22

A3 P1 589 25 21
A3 P2 2,268 18 14
A3 P3 389 16 12
A3 P4 477 103 15
A3 P5 323 24 20
A3 P6 292 51 45
A3 P7 219 16 12
A3 P8 691 25 21
A3 P9 173 16 12

A4 P1 301 24 20
A4 P2 231 30 25
A4 P3 271 28 22
A4 P4 436 38 32
A4 P5 956 36 24
A4 P6 193 24 18
A4 P7 230 36 32
A4 P8 310 24 20
A4 P9 200 24 18
A4 P10 208 24 20

A4 P11 498 34 29
A4 P12 579 34 29
A4 P13 295 25 20
A4 P14 591 104 91

A5 P1 604 61 55
A5 P2 376 25 21
A5 P3 376 25 21
A5 P4 401 26 21
A5 P5 565 31 26
A5 P6 493 34 29
A5 P7 521 34 29
A5 P8 427 24 20
A5 P9 413 24 20
A5 P10 502 28 23

Total 25,209 1,558 1,207

Figure 9: Characterization of the fraction of the paths that were
inconsistently sanitized. The right-most column indicates which frac-
tion of those paths could not be proved safe and so were highlighted
by our analysis. The difference between last and second last colmn is
that some paths sanitize constant strings or provably trusted data.

We used Red Gate’s .NET Reflector tool, combined with
other decompilation tools, to further investigate the execu-
tions which ScriptGard reported as improperly sanitized.
Our subsequent investigation reveals that errors result be-
cause it is difficult to manually analyze the calling context
in which a particular potion of code may be invoked. In par-
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Figure 10: Distribution of lengths of paths that could not be proved
safe. Each hop in the path is a string propagation function. The
longer the chain, the more removed are taint sources from taint sinks.

ticular, the source and the sink may be separated by several
intervening functions. Since ScriptGard instruments all
string operations, we can count how far sources and sinks
are removed from each other, as shown in 11(b). In Fig-
ure 10, we graph the distribution of these lengths for a ran-
domly selected sample of untrusted paths. This shows that
a significant fraction of the chains are long and over 200 of
them exceed 5 steps.

Our data on the length of def-use chains is consistent with
those reported in previous static analysis based work [18].
As explained in Section 2, the sharing of dataflow paths can
result in further ambiguity in distinguishing context at the
HTML output point in the server, as well as, in distinguish-
ing trusted data from untrusted data. In our investigation
we observed the following cases:

• A single sanitizer was applied in a context that did
not match. Typically, the sanitizer applied was in a
different function from the one that constructed the
HTML template. This suggests that developers may
not fully understand how the context — a global prop-
erty — impacts the choice of sanitizer, which is a local
property. This is not surprising, given the complexity
of choices in Figure 7.

• A sanitizer was applied to trusted data (on 1.4% of the
paths in our experiment) We still report these cases
because they point to developer confusion. On further
investigation, we determined this was because sinks
corresponding to these executions were shared by sev-
eral dataflow paths. Each such sink node could output
potentially untrusted data on some executions, while
outputting purely trusted data on others.

• More than one sanitizer was applied, but the applied
sanitizers were not correct for the browser parsing con-
text of the data1.

Inconsistent Multiple Sanitization: We found 3,245
paths with more than one sanitizer. Of these, 285 (or 8%)
of the paths with multiple sanitization were inconsis-
tent with the context. The inconsistent paths fell
into two categories: first, we found 273 instances with
the (EcmaScriptStringLiteralEncode)(HtmlEncode)+ pat-
tern applied. As we saw in Section 2, these sani-
tizers do not commute, and this specific order is in-
consistent. Second, we found 12 instances of the

1Errors where the combination was correct but the or-
dering was inconsistent with the nested context are reported
separately as inconsistent multiple sanitization errors.
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Figure 11: Characterizing ScriptGard instrumentation.

(EcmaScriptStringLiteralEncode)(UrlPathEncode)+ pat-
tern. This pattern is inconsistent because it does not prop-
erly handle sanitization of URL parameters. If an adversary
controls the data sanitized, it may be able to inject addi-
tional parameters.

We found an additional 498 instances of multiple sanitiza-
tion that were superfluous. That is, sanitizer A was applied
before sanitizer B, rendering sanitizer B superfluous. While
not a security bug, this multiple sanitization could break
the intended functionality of the applications. For example,
repeated use of UrlKeyValueEncode could lead to multiple
percent encoding causing broken URLs. Repeated use of
HtmlEncode could lead to multiple HTML entity-encoding
causing incorrect rendering of output HTML.

We also observed that nesting of parsing contexts is com-
mon. For example a URL may be nested within an HTML
attribute. Figure 11(b) shows the histogram of sanitizer se-
quence lengths observed. The inferred context for a majority
of these sinks demanded the use of multiple sanitizers. Fig-
ure 8 shows the use of multiple sanitizers in the application is
widespread, with sanitizer sequences such as UrlPathEncode
HtmlEncode being most popular. In our application, these
sanitizers are not commutative, i.e. they produce different
outputs if composed in different orders, which means that
paths with different orderings produce different behavior.

Because ScriptGard is a dynamic technique, all paths
found can be reproduced with test cases exhibiting the
context-inconsistent sanitization. We investigated a small
fraction of these test cases in more depth. We found that
while the sanitization is in fact inconsistent, injecting strings
in these contexts did not lead to privilege escalation attacks.
In part this is because our positive tainting is conservative:
if we cannot prove a string is safe, we flag the path. In
other cases, adversary’s authority and the policy of the test
application made it impossible to exploit the inconsistency.

6.2 Runtime Overhead
For our experiments, the server was a dual core Intel ma-

chine running at 3.16 GHz with 4 GB of RAM, 250 GB
of 7200 RPM disk, running Windows Server 2008. Our
client was a Core 2 Duo Intel machine running at 2.67 GHz
with 8 GB of RAM, 160 GB of 7200 RPM disk, running 64-
bit Windows 7. We connected the client and server directly
using a network switch.

Full overhead: We started by measuring the overhead
of the full ScriptGard instrumentation, including positive
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Figure 12: Overhead of PPP on 19 URLs. Time is in milliseconds.
Top of bar is the 75th percentile of 20 samples.

taint flow and output parsing. Then we measured the over-
head that would be incurred by the deployment phase of
path preferential profiling techniques. While the full instru-
mentation incurs a huge overhead, the preferential profiling
incurs negligible overhead.

We took nine URLs, each of which triggered complicated
processing on the server to create the resulting web page.
For each URL we first warmed the server cache by request-
ing the URL 13 times. We then measured the time to first
byte of 13 additional queries to the server for the URL. Time
to first byte is appropriate here because we are interested
in the overhead added by ScriptGard to server process-
ing. Finally, we took the 75th percentile result, following
web performance analysis practice used by colleagues at our
institution responsible for a large public facing web site. Un-
fortunately, we found overheads of over 175.6x for the full
analysis, for example a URL that took 0.53 seconds to load
without instrumentation took 92.73 seconds to load with all
checks.

PPP: Fortunately, we can shift much of this overhead to a
pre-release phase by using preferential path profiling (PPP)
techniques. As we described above, the optimizations in
PPP include a smart way of numbering code blocks and a
way to avoid updating global state when certain “preferred”
paths are taken.

We used a wide-area network simulator running on the
server to emulate conditions of a typical IEEE 802.11b link
between the client and the server, to produce realistic net-

Switch 80211b
None PPP Overhead None PPP Overhead

246.0 241.3 -1.93% 2,355.5 2,358.2 0.12%
139.3 139.3 0.00% 2,163.2 2,163.2 0.00%
217.3 215.5 -0.81% 2,146.5 2,121.2 -1.18%
142.5 141.0 -1.05% 2,731.8 2,719.0 -0.47%
209.5 202.5 -3.34% 1,548.7 1,574.4 1.66%
207.5 206.3 -0.60% 1,413.4 1,416.4 0.21%
250.5 238.0 -4.99% 2,451.7 2,476.5 1.01%
207.5 205.5 -0.96% 2,442.2 2,455.7 0.55%
139.3 136.3 -2.15% 1,742.2 1,739.9 -0.13%
221.8 209.0 -5.75% 2,376.2 2,370.7 -0.23%
258.0 260.3 0.87% 2,373.0 2,373.5 0.02%
206.0 206.3 0.12% 2,571.8 2,527.5 -1.72%
152.3 156.5 2.79% 1,588.9 1,505.9 -5.22%
215.8 224.0 3.82% 1,266.9 1,261.4 -0.43%
179.5 180.3 0.42% 2,533.5 2,530.8 -0.11%
130.0 119.8 -7.88% 2,493.5 2,489.2 -0.17%
177.0 177.3 0.14% 2,408.0 2,350.5 -2.39%
267.0 271.3 1.59% 1,416.1 1,413.1 -0.21%
176.3 181.0 2.70% 1,534.9 1,538.4 0.23%

Average -0.60% Average -0.13%
Median -0.90% Median -0.45%

Figure 13: PPP overhead statistics . Time is in milliseconds, 75th

percentile reported from 20 samples.

work conditions for evaluating the total overhead. We then
instrumented our application using preferential path profil-
ing and performed training on a set of 19 URLs. To test the
worst-case performance from PPP, we then chose 19 URLs
completely different from those that were used during train-
ing. We then visited each URL 20 times and measured the
time to first byte.

Figure 12 graphs the time to first byte for each of our test
URLs, in milliseconds, after removing the first visit. To ac-
count for outliers, the time measurement represents the 75th

percentile of the measurements over a series of 19 samples.
Our graph shows error bars representing one standard devi-
ation in each direction.

Figure 13 shows the median for each URL visited and the
overhead for each of the 19 URLs. The average overhead for
using preferential path profiling is actually negative, which
we attibute to the overhead being too small to be statisti-
cally significant. We report overhead both for direct connec-
tion to the switch and for when the network simulator is in
use configured to simulate an 802.11 connection. Our results
show that while the runtime overhead of the full Script-
Gard analysis is prohibitive, the deployment overhead can
be decreased greatly by shifting analysis to a training phase.

7. RELATED WORK
Many defense techniques for scripting attacks have been

proposed, which we discuss next. ScriptGard targets a
new class of context-inconsistency errors.

Defense Techniques: Browser-based mitigations, such as
Noncespaces, XSS Auditor, or DSI make changes to the web
browsers that make it difficult for an adversary’s script to
run [3, 11, 25]. These approaches can be fast, but they re-
quire all users to upgrade their web browsers.

A server side mitigation, in contrast, focuses on changing
the web application logic. Blueprint describes mechanisms
to ensure the safe construction of the intended HTML parse



tree on the client using JavaScript in a browser-agnostic
way [20]. However, issues in applying Blueprint’s mecha-
nisms to various context still exist and developers may place
them wrongly. Our work addresses this separate aspect of
the problem, in a way that does not require any manual
effort from developers.

XSS-GUARD [4] proposes techniques to learn allowed
scripts from unintended scripts. The allowed scripts are
then white-listed. Like ScriptGard, it employs a web
browser for its analysis, but the two approaches are funda-
mentally different. ScriptGard’s defense is based on auto-
matic server-side sanitizer placement, rather than browser-
based white-listing of scripting in server output. XSS-
GUARD’s techniques are intended for applications that al-
low rich HTML, where designing correct sanitizers becomes
challenging. ScriptGard target applications with fairly re-
strictive policies that have already addressed the sanitizer-
correctness issue.

Google AutoEscape is a context-sensitive auto-
sanitization mechanism for Google’s GWT and CTem-
plates templating frameworks. As explained earlier, the
templating languages it auto-sanitizes are much simpler
and AutoEscape does not need to handle if-else or loop
constructs which create path-senstivity a major issue.
ScriptGard’s target is towards large-scale legacy appli-
cations, where sanitization placement logic is complex and
already deployed, so rewriting all such logic is not practical.

SecuriFly translates bug specifications written in a spe-
cial program query to runtime instrumentation that detects
these bugs [21]. Our approach reasons both about the
browser context as well as the server state, allowing us to
tackle sanitizer placement problems not detected by Securi-
fly.

Software security analysis of web applications: Soft-
ware security focuses on using program analysis to find se-
curity critical bugs in applications. The WebSSARI project
pioneered these approaches for web applications, and sev-
eral static analysis tools have been propose [16, 35]. Run-
time approaches, like ours, has the advantage of demon-
strating clear, reproducible test cases over static analysis
tools. Multiple runtime analysis systems for information
flow tracking have been proposed, including Haldar et al.
for Java [12] and Pietraszek et al. [28] and Nguyen-Tuong et
al. for PHP [26]. Typically systems use negative tainting to
specifically identify untrusted data in web applications ap-
plications [18, 19, 21, 36]. While negative taint is preferable
for finding bugs, it is less desirable for mitigations because
it requires specifying all sources of taint. Our design distin-
guishes itself from most previous work in that it tracks pos-
itive taint, which is conservative default fail-close approach,
and side-steps identifying all sources of taint. The main
exception is WASP [13], which does use positive taint, but
which concerned SQL injection attacks, which do not exhibit
the path sensitivity, use of multiple sanitizers, and need for
a browser model to determine if data is a potential cross
site scripting attack. WASP was also evaluated on much
smaller applications (maximum 20,000 lines of code) than
considered in this work.

Sanitizer correctness: Balzarotti et al. show that custom
sanitizer routines are often incorrectly implemented [2].

Livshits et al. developed methods for determining which
functions in a program play the role of sanitizer. Their
Merlin system is also capable of detecting missing sanitiz-

ers [19]. ScriptGard’s analysis is complementary to these
works. Sanitizers may be present, and they may be func-
tionally correct for contexts they are intended to be used in.
Incorrect placement, however, can introduce errors.

The Cross-Site Scripting Cheat Sheet shows over two hun-
dred examples of strings that exercise common corner cases
of web sanitizers [29]. The Bek project proposes a sys-
tematic domain-specific languages for writing and checking
sanitizers [15, 33].

8. CONCLUSIONS
We analyzed a set of 53 large web pages in a large-scale

web application with over 400,000 lines of code. Each page
contained 350–900 DOM nodes. We found 285 multiple-
encoding issues, as well as 1,207 instances of inconsistent
sanitizers, establishing the prevalence of our two new prob-
lem classes and the effectiveness of ScriptGard as a testing
aid. With preferential path profiling, when used for mitiga-
tion, ScriptGard incurs virtually no statistically signifi-
cant overhead on cached paths.
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